

Traffic Impact Assessment

Proposed Refurbishment at 93 Edensor Road, St Johns Park prepared on behalf of Cullinan Ivanov Partnership by TRAFFIX traffic & transport planners ref. 11 029 report v3 22 March 2011

> treffic: rafile & transport planars

> > po box 1061 potts point nsw 1385 0: +61 2 8324 8700 f; =61 2 9380 4481 ws www.traifbx.com.au abn. 66065132961

Contents

1. Intr	I. Introduction		
2. Loc	cation and Site	2	
3. Exi	sting Traffic Conditions	5	
3.1	Road Hierarchy	5	
3.2	General Description of the Road Environment	7	
3.3	Public Transport	8	
3.4	Existing Site Generation	10	
3.5	Existing Intersection Performance	10	
4. De	scription of Proposed Development	13	
5. Pai	rking Requirements	14	
5.1	Council Controls	14	
5.2	Surveyed Existing Parking Demand	14	
5.3	Seasonal Variation	15	
	Proposed	16	
5.4	Parking Provision	16	
5.5	Disabled Parking	17	
5.6	Servicing	17	
6. Tra	affic Impacts	19	
6.1	Trip Generation	19	
6.2	Peak Period Intersection Performances	19	
7. Ac	cess & Internal Design Aspects	21	
7.1	Access	21	
7.2	Internal Design	21	
8. Co	nclusions	23	

Figure List

Figure 1: Location Plan	3
Figure 2: Site Plan	4
Figure 3: Surrounding Road Hierarchy	6
Figure 4: Public Transport Routes	9

List of Appendices

Appendix A:	Photographic Record
Appendix B:	Survey Results
Appendix C:	SIDRA Outputs
Appendix D:	Reduced Plans

Appendix E: Swept Paths

1. Introduction

TRAFFIX has been commissioned by Cullinan Ivanov Partnership, on behalf of St Johns Park Bowling Club Ltd, to undertake a traffic impact assessment in support of a development application relating to the refurbishment and expansion of the St Johns Park Bowling Club at 93 Edensor Road, St Johns Park. The development is located within the Fairfield City Council LGA and has been assessed under that Council's controls.

This report documents the findings of our investigations and should be read in the context of the Statement of Environmental Effects (SEE) prepared separately. The proposed expansion results in an additional 1,560m² of gross leasable area (GLA). In terms of parking provisions, a small reduction in the total number of spaces is proposed due to the construction of a new VIP park and construction of a new chiller plant. Accordingly the development application will not require referral to the RTA under the provisions of SEPP (Infrastructure) 2007.

The report is structured as follows:

- Section 2: Describes the site and its location
- Section 3: Documents existing traffic conditions
- Section 4: Describes the proposed development
- Section 5: Assesses the parking requirements
- Section 6: Assesses traffic impacts
- Section 7: Discusses access and internal design aspects
- Section 8: Presents the overall study conclusions.

2. Location and Site

The site is located within the suburb of St Johns Park, approximately 29 kilometres west of the Sydney CBD. The site lies approximately 2 kilometres south-west of the Fairfield Showground's and is situated 50 metres to the south-east of the intersection of Edensor Road and the Parramatta-Liverpool Transitway.

The site is irregular in configuration and has a site area of approximately 24,314m². It has a southwestern frontage to Edensor Road of 190 metres, south-eastern frontage to St Johns Park of approximately 165 metres. The northern boundary of about 240 metres is formed by Green Valley Creek.

Access to the site is available via a two-way driveway crossing at Edensor Road. Off-street parking is currently available via the on-site multi-storey car park. A total of 601 parking spaces are currently provided on-site.

A Location Plan is presented in **Figure 1**, with a Site Plan presented in **Figure 2**. Reference should also be made to the Photographic Record presented in **Appendix A**, which provides an appreciation of the general character of roads and other key attributes in proximity to the site.

Figure 1: Location Plan

Figure 2: Site Plan

3. Existing Traffic Conditions

3.1 Road Hierarchy

The road hierarchy in the vicinity of the site is shown in **Figure 3** with the following roads of particular interest:

- Elizabeth Drive: an RTA State Road (MR 535) that runs in an east-west direction connecting The Northern Road with the Hume Highway, and also crossing the Westlink M7. Elizabeth Drive is the major east-west arterial connection in the vicinity of the site and carries approximately 36,000 vehicles per day (vpd);
- Cabramatta Road: an RTA State Road (MR 534) that runs in an east-west direction connecting Elizabeth Drive to the west with the Hume Highway to the east. It carries an in the order of 15,000 vpd near its intersection with Elizabeth Drive;
- Smithfield Road: an Regional Road (RR 7220) that runs in a north-south direction that connects the Cumberland Highway to the north with Elizabeth Drive to the south. It carries an approximately 22,000 vpd;
- Edensor Road: a collector road that runs in an east-west direction and forms the south-western boundary of the site. It carries an 20,000 vpd at its intersection with Smithfield Road;
- Bonnyrigg Avenue: a local collector road that generally runs in a north-south direction between Edensor Road and Elizabeth Drive;

It can be seen from **Figure 3** that the site is conveniently located with respect to the arterial and local road systems serving the region. It is therefore able to effectively distribute traffic onto the wider road network, minimising traffic impacts.

Figure 3: Surrounding Road Hierarchy

3.2 General Description of the Road Environment

Elizabeth Drive is constructed with a 28 metre wide divided carriageway incorporating a wide landscaped median and carries two lanes of traffic in each direction. It has signalised intersections with Smithfield Road, the Parramatta-Liverpool Transitway and Bonnyrigg Avenue to the southwest of the site. A left turn slip lane is provided at its signalised intersection with Cabramatta Road West for traffic travelling both eastbound on Elizabeth Drive and westbound along Cabramatta Road West.

Cabramatta Road West is constructed with a 12 metre wide carriageway and carries two lanes of traffic in each direction. It forms a signalised 'T' junction with Elizabeth Drive, one kilometre south of the site.

Smithfield Road is generally constructed with a 12 metre wide carriageway and carries a single lane of traffic in each direction. At its intersection with Edensor Road, the carriageway widens to a total of five lanes on both northern and southern approaches. This includes dedicated right turn storage lanes on both approaches of Smithfield Road.

Edensor Road is constructed with a 12 metre wide carriageway and carries two lanes of traffic in each direction between Smithfield Road and Bonnyrigg Avenue. This includes a through lane and a right turn lane for eastbound traffic on approach to Bonnyrigg Avenue. To the east of Bonnyrigg Avenue, Edensor Road carries a single lane in each direction. Edensor Road also intersects the Parramatta-Liverpool Transitway, 50 metres to the north-west of the site. A bus stop is located on both sides of Edensor Road directly opposite of the site.

Bonnyrigg Avenue is constructed with a 16.5 metre wide divided carriageway and carries two lanes of traffic in each direction. It forms signalised intersections with Edensor Road, 60 metres south-east of the site and Elizabeth Drive, 1.0 kilometre to the south-west of the site.

3.3 Public Transport

The public transport services operating in the locality are shown in **Figure 4**, below. It can be seen that a number of bus services operate in the St Johns Park area which provide regular scheduled services to surrounding suburbs including Cabramatta, Liverpool, Miller, Cecil Park and Parramatta. The Parramatta-Liverpool Transitway also operates at close proximity to the site.

Furthermore, St Johns Park Bowling Club operate a courtesy shuttle bus service from the site. Patron questionnaire surveys indicate that these services experience only moderate usage with a total mode share of only 2.5% (0.7% courtesy bus, 1.8% regular bus services). This compares to 51% for car driver.

It is expected that these mode shares would be maintained post development and this assumption has been included in the modelling included in this assessment.

Figure 4: Public Transport Routes

3.4 Existing Site Generation

The existing St Johns Park Bowling Club (93 Edensor Road) typically consists of a 3 level building, multi-storey car park and three bowling greens. The Club building itself is comprised of an auditorium, several gaming rooms, bistro, club facilities, licensed areas and offices. The existing GLA is estimated at 2,978m² comprising of 2,322m² of club and community facilities and 656m² of restaurants and cafes.

The RTA's *Guide to Traffic Generating Developments* provides no generation rates for clubs. Rather, it states that assessment is to be based on surveys of the site for extensions to existing clubs and this is certainly appropriate in the case of the expansion of the existing club. Data collected from a recent survey of the club undertaken on a typical peak demand night of Friday, the 25th February 2011, indicated a peak evening traffic generation for the site of 113 veh/hr (65 in, 48 out).

The site currently has a 3 storey car park, as well as two on-ground car parks at the front and rear of the site, with a total of 601 spaces.

3.5 Existing Intersection Performance

For the purposes of assessment of the traffic impacts of this development, surveys were undertaken of the most critical intersections adjacent to the site, being:

- Edensor Road and Smithfield Road; and
- Edensor Road and Bonnyrigg Avenue.

The results of these surveys, included in **Appendix B**, were analysed using the SIDRA computer program to determine their performance characteristics under existing traffic conditions. The SIDRA model produces a range of outputs, the most useful of which are the Degree of Saturation (DOS) and Average Vehicle Delay per vehicle (AVD). The AVD is in turn related to a level of service (LOS) criteria. These performance measures can be interpreted using the following explanations:

DOS - the DOS is a measure of the operational performance of individual intersections. As both queue length and delay increase rapidly as DOS approaches 1, it is usual to attempt to keep DOS to less than 0.9. When DOS exceeds 0.9 residual queues can be anticipated, as occurs at many major intersections throughout the metropolitan area during peak periods. In this regard, a practical limit at 1.1 can be assumed. For intersections controlled by roundabout or give way/stop control, satisfactory intersection operation is generally indicated by a DOS of 0.8 or less.

AVD - the AVD for individual intersections provides a measure of the operational performance of an intersection. In general, levels of acceptability of AVD for individual intersections depend on the time of day (motorists generally accept higher delays during peak commuter periods) and the road system being modelled (motorists are more likely to accept longer delays on side streets than on the main road system).

Level of Service Average Delay per Vehicle (secs/veh)		Traffic Signals, Roundabout	Give Way and Stop Signs		
À	less than 14	Good operation	Good operation		
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity		
С	29 to 42	Satisfactory	Satisfactory but accident study required		
D	43 to 56	Operating near capacity	Near capacity and accident study required		
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity and requires other control mode		
F	More than 70	Unsatisfactory and requires additional capacity.	Unsatisfactory and requires other control mode or major treatment.		

LOS - this is a comparative measure which provides an indication of the operating performance of an intersection as shown below:

A summary of the modelled results are provided in Table 1 below.

Intersection	Period	Control Type	Degree of Saturation	Intersection Delay	Level of Service
Edensor Road and Smithfield Road	PM	Traffic Signal	1.032	54.2 sec	LOS D
Edensor Road and Bonnyrigg Avenue		Traffic Signal	0.741	24.1 sec	LOS B

Table 1: Existing Intersection Performances: PM Peak Hour

It can be seen from **Table 1** that both intersections operate satisfactorily under the existing 'base case' scenario, with a level of service of D and B, respectively, during the PM peak period and with acceptable delays.

Nevertheless, it is stressed that the most relevant use of this analysis is to compare the relative change in the performance parameters as a result of the proposed development. This is discussed further in Section 6.

4. Description of Proposed Development

A detailed description of the proposed development is provided in the Statement of Environmental Effects prepared separately. In summary, the development for which approval is now sought comprises the following components:

- Refurbishment and expansion of the existing club building, with a total increase in GLA of 1,560m², comprising of:
 - 78m² GLA of restaurants and cafes; and
 - 1,482m² GLA of club and bar/lounge/gaming facilities.
- Reconfiguration of the rear car park and new undercover spaces;

It should be noted that a significant proportion of the bar/lounge/gaming expansion relates to increased gaming area, however the number of machines remains unchanged at 398.

The parking and traffic impacts arising from the development are discussed in Sections 5 and 6, respectively. Reference should be made to the plans submitted separately to Council which are presented at reduced scale in **Appendix D**.

5. Parking Requirements

5.1 Council Controls

Parking for the proposed development has been assessed in accordance with the requirements of Fairfield City Council's DCP (Chapter 12) – Car Parking, Vehicle and Access Management. The parking requirements in accordance with Councils DCP are set out in **Table 2**;

Area Type			Parking Required
Club and Community Facilities	1,482m²	1 / 5m ² GLA	296.4
Restaurants and Cafes	78m ²	1 / 7m ² GLA	11.1
		Total	308

Table 2: Council DCP Parking Rates

It can be seen that under Fairfield DCP guidelines, there is a 'nominal' requirement to provide an additional 308 spaces. However, this is based on generic rates for Clubs from outdated research and does not take into consideration the specific character of the existing club in its current context. Indeed, assessment based upon surveys is the recommended approach outlined in the RTA's *Guide to Traffic Generating Developments*. In this regard, the parking demands will be substantially lower than that required under Council's controls, as discussed in the following Sections.

5.2 Surveyed Existing Parking Demand

A recent parking survey was conducted of the site on a typical peak Friday evening of 25th February 2011 between 5pm and 9pm. A summary of the results is detailed in **Table 3** below.

Time	Parking Demand	Vacancy (%)	Number of Vacant Spaces
7:00 pm	253	58%	348
7:30 pm	289	52%	312
8:00 pm	248	59%	353
8:30 pm	245	59%	356

Table 3: Existing Evening Peak Period Parking Demand

It can be seen from Table 3 that a peak parking demand for 289 spaces occurred at 7:30pm. At this time there were still a total of 312 vacant spaces. With the total demand during the evening peak period at only 48% of the total capacity, the site can readily accommodate extra parking demands. Notwithstanding, seasonal variations are a factor that need to be considered, as discussed below.

5.3 Seasonal Variation

As recent survey results are being used to evaluate the existing number of car spaces at the site, it is necessary to ensure the survey results are giving a true representation of typical daily traffic volumes. In this regard, customer count data was used to compare the number of customers at the site on the day of the survey, against the 85th percentile of the daily number of customers over a one year period. A summary of the results is detailed below in Table 4.

Description	Description Number of Customers	
Day of Survey Number of Customers	1,387	- 1.09
85 th Percentile Daily Number of Customers	1,513	

Table /	4: Comp	arison of	Customer	Numbers
---------	---------	-----------	----------	---------

It is assumed that customer numbers are directly proportional to parking demands (i.e. an increase in customer numbers will result in the same increase in parking demands).

The comparison found Club patronage on the day of the survey was moderately lower (9%) than what is considered the appropriate 85th percentile 'design demand'. Therefore a correction factor of 1.09 has been applied to the recent survey parking data as outlined in **Table 5** below, to establish the appropriate demand at the 'design' level.

Time	Parking Demand	Vacancy (%)	Number of Vacant Spaces
7:00 pm	276	54%	325
7:30 pm	315	48%	286
8:00 pm	270	55%	331
8:30 pm	267	56%	334

Table 5: Factored Evening Peak Period Parking Demand

Results from the correction of the evening peak parking demands shows the factored peak parking demand to be 315 spaces. This equates to a parking rate of 1 spacer per 9.45m² GLA when considering the existing area of 2,978m². This is within the typical range of large clubs based on other studies.

5.4 Proposed Parking Provision

Application of the above rate to the proposed expansion of 1,560m² results in an increased parking demand for 165 spaces, to a total of 480 spaces.

Due to the expansion of the building to the north-east, the rear car park is to be reconfigured due to the construction of the new chiller plant and now includes an undercover parking area. A minor reduction (6 spaces) in the total number of parking spaces results, with the total parking provision reduced to 595 spaces.

In summary, the development proposes a total parking provision of 595 spaces which is more than sufficient to accommodate the increased parking demand associated with the proposed expansion. With a design demand for only 480 spaces, the proposed parking (595 spaces) provides additional spare capacity for any potential 'non-design' occasions, in the unlikely event that they were to occur.

It is noted that the above surveyed demands also include bowling green usage. In this regard, any parking demands associated with the bowling greens during the survey period have been attributed to the Club floor areas. This assumption has the effect of increasing the parking demand so that the adopted rate may be considered a worst case scenario.

5.5 Disabled Parking

Council DCP requires that parking for persons with a disability be provided at a rate of 2 spaces per 100 parking spaces provided. This results in a minimum requirement for 12 disabled spaces for the redeveloped club, with minimum widths of 3.8 metres.

The site currently provides a total of 13 disabled spaces; two with a width of 4.0 metres. The remaining 11 spaces do not satisfy Council's minimum width requirements; nor the requirements of AS 2890.6. The acceptability of the current disabled spaces should therefore be reviewed having regard for the fact that the majority of these spaces are capable of complying with the requirements of AS2890.6, subject to minor changes to linemarking. This is therefore a minor matter that can be conditioned; thereby allowing certification in accordance with AS2890.6 which we note is soon to be adopted by the BCA.

Nevertheless, it is recognised that these are existing spaces and currently provide a reasonable level of amenity for disabled visitors.

5.6 Servicing

All servicing, including garbage collection, of the site will be undertaken from the loading dock area at the north-western corner of the club building. Access and manoeuvrability to this dock is discussed further in Section 7. Deliveries should generally occur during the mid-morning period when traffic

flows within the car park will be reduced. Any increase in truck movements is as a result of the proposed development is expected to be relatively minor and therefore the use of Edensor Road for deliveries will result in minimal change to the amenity of surrounding residents.

6. Traffic Impacts

6.1 Trip Generation

The existing site generates 113 veh/hr (65 veh/hr in, 48 veh/hr out) during the evening peak period as discussed in Section 3. This corresponds to an existing area of 2,978m² GLA. No traffic generation rates are specified in the RTA for this type of development and in any event, such a rate would be inferior to a survey based assessment. Therefore an estimate of the traffic generation rate is produced using the relationship between existing traffic generation and GLA.

Having regard for the above, the existing site traffic generation rate equates to 3.8 trips per 100m² GLA of floor area. This increases to 4.1 trips per 100m² GLA when consideration is given to the seasonal variation as discussed in Section 5.3 in relation to car parking.

Application of this factored rate of 4.1 trips per 100m² GLA to the proposed development 4,538m² GLA of results in a total site generation of 186 veh/hr. This represents a net additional traffic generation of 73 veh/hr above that of the surveyed volumes.

This additional traffic generation is quite moderate and will be distributed onto the external road network making use of all possible access routes, with impacts on the external road network discussed below.

6.2 Peak Period Intersection Performances

Recent survey data showed the existing evening peak period traffic generation to be 113 veh/hr and this is included within the existing surveys and analysis reported upon in Section 3. /. For this peak one hour period, 57 vehicles arrived from or departed to the north, whilst 56 vehicles arrived from or departed to the south. This shows an approximate 50:50 split in the direction of travel to/from the site from either direction along Edensor Road. The same split is therefore assumed for the net additional traffic generation of 73 veh/hr, which results in 37 veh/hr will travel north to the intersection of Edensor Road and Bonnyrigg Avenue, and 36 travelling south to the intersection of Edensor Road and Smithfield Road.

The net increase of approximately 37 veh/hr at each of the subject intersections is negligible in comparison to the total existing traffic 'throughput' at these intersections. However, the net additional traffic generation was included in the SIDRA model for both intersections with the results detailed in **Table 6** below.

Intersection	Period	Control Type	Degree of Saturation	Intersection Delay	Level of Service
Edensor Road and Smithfield Road	PM	Traffic Signal	1.032	54.3 sec	D
Edensor Road and Bonnyrigg Avenue	r-1¥ŧ	Traffic Signal	0.890	24.9 sec	В

Table 6: Future Intersection Performances: PM Peak Hour

It is evident that the proposed development will have negligible impacts on the existing road network with no change to existing Levels of Service. Minor increases in average intersection delay will be less than 1 second which is also very moderate.

The traffic impact of the development is therefore moderate and readily able to be readily accommodated by the surrounding roads and does not require any external improvements or changes to the road network.

7. Access & Internal Design Aspects

7.1 Access

The development will retain the existing access to Edensor Road which includes a 6 metre entry and exit driveway, separated by a median. This satisfies the requirements of AS2890.1 for a Category 4 driveway.

Adequate visual splays are provided and the existing driveway is understood to operate safely and efficiently. As such, no changes are considered necessary as a result of the proposed development.

7.2 Internal Design

The internal car park design requires some revision to ensure it complies with the requirements of AS2890.1 (2004), with the following characteristics noteworthy:

- All spaces satisfy the minimum clear width of 2.5 metres, length of 5.4 metres and aisle width of 5.8 metres, fulfilling the requirements of AS2890.1 (2004) for a User Class 2 development;
- Column and wall locations for a number of spaces within the existing multi-storey car park do not satisfy the parking space design envelope shown in Figure 5.2 of AS2890.1 (2004). Notwithstanding, these are existing spaces and currently provide a level of amenity and function for users. In this regard, the subject proposal will not result in any significant change to these existing conditions and the design of this area is assumed to have been certified previously;
- Columns in the proposed VIP car park are not setback the full 750mm as nominally required in Figure 5.2 of AS2890.1 (2004). However the aisle width is superior to the minimum requirements and as such these spaces do effectively satisfy the requirements of AS2890.1;
- Spaces adjacent to wall obstructions in the VIP car park have been widened in accordance with AS2890.1,
- Reference should be made to the sketch, included in Appendix D for clarity, which indicates the required changes to the car park as a result of the proposed new chiller plant location. This

effectively results in a localised change to existing flows whereby a relatively short section will now accommodate two-way flow. Appropriate signage and linemarking will be sufficient to ensure that these changed conditions in the vicinity of the new chiller room will operate safely and efficiently as demonstrated by the swept paths included in **Appendix E**; and

Eleven (11) of the existing disabled parking spaces do not satisfy the minimum width requirements detailed in AS2890.6 (2009) as discussed above. The acceptability of the current disabled spaces should be reviewed to ensure spaces are satisfactory and in this regard, it is noted that alternative linemarking within the car park may be sufficient to enable compliance with the relevant standards. This is therefore a minor matter that can be conditioned.

In summary, all proposed changes to the car park satisfy AS2890.1 and are supportable. A number of minor design issues are evident with the existing car park design although these are existing deficiencies that need not be revisited and the proposal will not impact on the existing performance or safety of the car park. Furthermore, it is expected that any minor deviation from the standards could be addressed through an appropriate condition of consent requiring compliance with AS2890.1 and AS2890.6 for accessible spaces.

8. Conclusions

In summary:

- The parking and traffic generation arising from the proposed refurbishment and expansion of the St Johns Park Bowling Club has been assessed based on the recent survey data of the site which has been factored to account for seasonal variations;
- The development will result in an increase of 64 veh/hr during the evening peak period above that of the existing club. This increases to 73 veh/hr when seasonal factors are taken into account. This is moderate and in addition, it represents combined entries and exits and is split into all available routes. Based on the modelling undertaken, the additional traffic will have minimal impact on the performance of the surrounding road network and can be readily accommodated;
- Council's DCP 'nominally' requires an additional 308 spaces, although this is a generic rate that is not considered to reflect the character of the site. It is considered inappropriate for this application and the recommended approach is to undertake surveys, as recognised in the RTA's Guidelines. This approach is far superior and is able to accurately reflect the character of the existing Club which has been demonstrated to experience significantly lower demands than indicated by Council's parking rate;
- Based on the surveyed demands and with adjustment for seasonal factors, the proposed development will result in a total demand for up to 480 spaces (an effective increase of 165 spaces) which can be readily accommodated by the proposed parking provision of 595 spaces. Indeed, there will be ample spare parking capacity to accommodate extraordinary (non-design) peaks as may occur on an infrequent basis;
- The internal design of all new car parking areas is considered satisfactory and will operate safely and efficiently. Minimal changes are proposed to the remainder of the existing car park and any minor deficiencies are not considered within the scope of this development, as discussed in Section 7; and
- The existing access locations and design arrangements satisfy the requirements of AS2890.1 (2004), and provide adequate lines of sight for entry and exit movements.

It is therefore concluded that the proposed development is supportable on traffic planning grounds and the proposed development will operate satisfactorily.

Appendix A

Photographic Record

. . . .

View looking north-west along Edensor Road, across site frontage.

View looking north-east at access driveway on Edensor Road.

View looking south-east along Edensor Road, at the intersection with Bonnyrigg Avenue.

View looking north-west along Edensor Road, on approach to the intersection with Bonnyrigg Avenue. .

View looking south-east along Edensor Road, at intersection with Smithfield Road.

View looking south-west along Smithfield Road, at the intersection with Edensor Road.

Appendix B

Survey Results

							18:30 19:00 19:30
Parking							17:00 18:00
300 300	250	700	150	100	50	0	17
Curtis Traffic Surveys	b: 110206tx	Day, date 25/02/11	ocation: St John's Park Bowling Club	Veather: Fine	burveyor		Parked vehicles

Parked vehicles

21:00

20:30

20:00

Total parking	129	179	233	253	289	248	245	233
at grade near greens Tota	12	16	28	33	42	41	42	40
	0	0	0	0	0	0	0	0
vel roof	3	З	2	ю	n	4	4	4
second level third level	21	43	52	62	68	67	60	54
lower level secor	71	94	128	132	142	113	116	112
at grade near Edensor Rd Iov	22	23	23	23	34	23	23	23
10 00	17:00	18:00	18:30	19:00	19:30	20:00	20:30	21:00

					Car driver	Car passenger Route bus including Transitway	Courtesy minibus		Walkeu Dronned off					
	Patron Mode													
Patron interviews	110206tx	25/02/11	St John's Park Bowling Club	Fine	Traffix	Mode	Car driver 139	Car passenger 113	ng Transitway 5	Courtesy minibus 2	Taxi 2	Walked 7	Dropped off 4	Total interviews 272
Curtis Traffic Surveys	Job:	Day, date	Location:	Weather:	Client:)	Route bus including Transitway	Cou				Tc

out 16				Total			24		113
18				OUT	51	16	3	12	48
Peak Volumes		ers		0	12	18	19	16	65
Peak		evious numb		right out IN	۲	ŋ	4	£	21
count Club		erage of pre			ø	11	, ,	7	27
ement c		e are the av		right in left out	9	10	9	7	29
Turning movement count 110206tx ^{25/02/11} St John's Park Bowling Club	Fine	Numbers in white are the average of previous numbers	Car park	left in right	9	Ø	13	0	36
Curtis Traffic Surveys Job: Day, date Location:	Weather: Client:			Time Period	17:00 to 17:15	17:15 to 17:30	17:30 to 17:45	17:45 to 18:00	Total

		6 Total	529	511	590 peak	446	407	467	471	388			2076 _{peak hour}	1954	1910	1791	1733
392 242	r Rd	61	135	149	158	142	119	150	134	124	1111		584	976	827	669	527
Volumes	From Edensor Rd east	5	87	79	94	62	59	11	79	47	578		322	491	412	318	256
Peal Volt		4	78	68	81	47	46	54	С С	6£	468		274	390	322	241	194
it count	From Bonnyrigg Av	m	64	71	84	43	43	56	53	48	462		262	398	327	243	200
ovemen & Bonny		2	65	55	78	44	45	32	36	36	391		242	326	271	193	149
Turning movement count 110206tx ^{25/02/11} Edensor Rd & Bonnyrigg Av Fine Traffix	From Edensor Rd west	F	100	89	95	108	ß	104	114	94	799		392	669	610	515	407
Curtis Traffic Surveys Job: Day, date Location: Weather: Client:		Time Period	16:00 to 16:15	16:15 to 16:30	16:30 to 16:45	16:45 to 17:00	17:00 to 17:15	17:15 to 17:30	17:30 to 17:45	17:45 to 18:00	Total	Hourly summary	16:00 to 17:00	16:15 to 17:15	16:30 to 17:30	16:45 to 17:45	17:00 to 18:00

Curtis Traffic Surveys	

Turning movement count	110206tx	40599	Smithfield Rd & Edensor Rd	Fine
	job:	Day, date	Location:	Weather:

Traffix

Client:

Peak Hour

2*

hfield Rd north From Edensor Rd west From Smithfield Rd south through right left through right left through right 218 39 28 61 9 19 155 22 212 48 23 48 10 18 168 21 212 48 23 48 10 18 168 21 208 45 32 59 15 16 124 19 203 49 37 76 19 12 121 26 203 49 30 75 25 11 131 22 216 69 39 13 12 12 17 26 225 73 38 98 13 9 119 23 275 40 13 127 10 124 17 255 408 13 23		All motor vehicles	vehicles											
throughrightleftthroughrightthroughright68218392861919155227221248234810181682171208453259151615419752214137761912267020349307525111312287216693978151222812214436722110124178125673389813911923812551754082635671271101097171286859173120244536559888288844183122258695757488303861203142301804553186303861203142301804550186	<u>۳۳</u>	om Smithfi	ield Rd north	From	Edensor R(d west	From	Smithfield	l Rd south	From	From EdensorRd east	i east	Tota	Total vahicle
218 39 28 61 9 155 212 48 10 18 168 203 45 32 59 15 16 154 203 45 32 59 15 16 154 203 49 37 76 19 15 121 203 49 30 75 25 11 131 203 49 36 72 25 11 131 204 36 72 21 10 124 256 73 38 98 13 9 119 256 175 567 127 10 1097 1 1755 408 122 258 69 574 574 844 183 122 258 69 574 574 841 183 122 258 74 574 574 841 203 142 301 80 574 574 846	ě			left	through		left	throug	1	left	through	h right	mov	movements
212 48 23 48 10 18 168 208 45 32 59 15 16 154 221 41 37 76 19 12 121 203 49 30 75 25 11 131 203 49 30 75 25 11 131 216 69 39 78 15 125 125 221 44 36 72 21 10 124 226 73 38 98 13 9 119 1755 408 263 567 127 100 1097 1 1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 841 183 122 258 69 57 574 861 203 142 301 80 57 574 864 203 142 301 80 57 574 864 203 142 301 80 57 574 865 533 3		68	218	39	28	E1	6	19	155	22	42	67	82	840
208 45 32 59 15 16 154 2211 41 37 76 19 12 121 203 49 30 75 25 11 131 203 49 30 75 25 11 131 203 49 36 72 25 11 131 216 69 39 72 21 10 124 221 44 36 72 21 10 124 256 73 38 98 13 9 119 1755 408 263 567 127 100 1097 1 1755 408 127 127 127 1097 1 844 183 122 244 53 65 598 844 183 122 258 69 57 574 841 203 142 301 80 48 501 846 203 143 333		72	212	48	23	48	To	18	168	21	38	I08	79	845
221 41 37 76 19 12 121 203 49 30 75 25 11 131 216 69 39 78 15 15 125 221 44 36 72 21 10 124 226 73 38 98 13 9 119 1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 844 183 122 258 69 57 574 848 204 138 288 74 54 531 841 203 142 301 80 48 501 845 203 143 373 74 45 499		71	208	45	32	59	15	16	154	19	23	94	97	863
203 49 30 75 25 11 131 216 69 39 78 15 15 125 221 44 36 72 21 10 124 226 73 38 98 13 9 119 1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 844 183 122 258 69 57 574 848 204 138 288 74 54 531 861 203 142 301 80 48 501 896 735 143 373 74 45 499		~ 75	221	41	37	76	61	12	121	26	41	120	88	877 Peak
216 69 39 78 15 125 221 44 36 72 21 10 124 226 73 38 98 13 9 119 256 73 38 98 13 9 119 1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 844 183 122 258 69 57 574 848 204 138 288 74 54 531 861 203 142 301 80 48 501 896 735 143 373 74 45 499		۶ ۲	203	49	30	75	25	11	131	22	24	118	67	825
221 44 36 72 21 10 124 256 73 38 98 13 9 119 1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 844 183 122 258 69 57 574 848 204 138 288 74 531 861 203 142 301 80 48 501 896 735 143 373 74 45 499		87	216	69	66	78	15 Z	15	125	21	32	94	99	857
256 73 38 98 13 9 119 1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 844 183 122 258 69 57 574 843 204 138 288 74 54 531 861 203 142 301 80 48 501 896 735 143 373 74 45 499		71	221	44	36	72	21	10	124	17	28	75	57	776
1755 408 263 567 127 110 1097 1 859 173 120 244 53 65 598 1 844 183 122 258 69 57 574 848 204 138 288 74 54 531 861 203 142 301 80 48 501 896 735 143 373 74 45 499		81	256	73	38	98	13	ი	119	23	24	82	49	865
859 173 120 244 53 65 598 844 183 122 258 69 57 574 848 204 138 288 74 54 531 848 204 138 288 74 54 531 861 203 142 301 80 45 501 896 735 143 373 74 45 499	•	595	1755	408	263	567	127	110	1097	171	282	788	585	
844 183 122 258 69 57 574 848 204 138 288 74 54 531 848 204 138 288 74 54 531 841 203 142 301 80 48 501 896 235 143 373 74 45 499		286	859	173	120	244	53	65	598	88	174	419	346	3425 Peak Hour
848 204 138 288 74 54 531 861 203 142 301 80 48 501 866 235 143 323 74 45 499		288	844	183	122	258	69	57	574	33	156	440	331	3410
861 203 142 301 80 48 501 896 235 143 323 74 45 499		303	848	204	138	288	74	54	531	88	150	426	318	3422
896 235 143 323 7 <u>4</u> 45 499		303	861	203	142	301	80	48	501	86	125	407	278	3335
		309	896	235	143	323	74	45	499	83	108	369	239	3323

Appendix C

SIDRA Results

Appendix C-1

SIDRA Results - Existing

Edensor Road and Bonnyrigg Avenue

Signals - Fixed Time Cycle Time = 80 seconds (Optimum Cycle Time - Minimum Delay)

		Demand		Deg	Average	Level of	95% Black o	oi Queue	Prop.	Effective	Avenage
Nov ID	The second second	iFlow	HW	Sain	Delay	Service	Vaitioles	Distance	Queued	Slop Rale	Speed
South E	ast: Edens	velivia sor Road	- 16	<u> 910 - 210 </u>	CCC.		<u> Alex</u>	0		ા ગામ પ્રદાશ	i (jervi)
21	L	339	0.0	0.734	18.6	LOS B	6.8	47.9	0.59	0.82	39.7
22	Т	615	0.0	0.682	18.2	LOS B	19.9	139.1	0.84	0.75	37.9
Approa	ch	954	0.0	0.734	18.4	LOS B	19.9	139.1	0.75	0.78	38.5
North W	/est: Eden:	sor Road	e served solari	s no sajad	n she she wal	eren er er er	ensera skajn	$X \mapsto \{1, j\} \in \mathbb{N}$	e Shining en A	e e se se esta esta esta esta esta esta	an ing sa
28	т	413	0.0	0.339	7.6	LOS A	9.3	65.1	0.51	0.45	47.7
29	R	255	0.0	0.741	38.4	LOS C	11.5	80.2	1.00	0.96	29.1
Approa	ch	667	0.0	0.741	19.4	LOS B	11.5	80.2	0.70	0.64	38.4
South V	Vest: Bonn	yrigg Avenue	NA BAN	en grane		e e consta		nen stepsej	dan di dega	participation de la composición de la c	standeja,
30	L	276	0.0	0.660	38.9	LOS C	11.8	82.8	0.96	0.84	26.8
32	R	288	0.0	0.690	39.6	LOS C	12.5	87.2	0.97	0.86	26.5
Арргоа	ch	564	0.0	0.690	39.2	LOS C	12.5	87.2	0.97	0.85	26.6

All Vehicles 2185 0.0 0.741 24.1 LOS B 19.9 139.1 0.79 0.75 34.5

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

		Demand	Average	Levelof	Average Back		Prop.	effective
Wov II) Description	Flow	Delay	Service	Pedestrian	Distance	Queued S	top Rate
P9	Across SE approach	53	29.8	LOS C	0.1	0.1	0.86	0.86
P13	Across NW approach	53	32.4	LOS D	0.1	0.1	0.90	0.90
P15	Across SW approach	53	32.4	LOS D	0.1	0.1	0.90	0.90

Level of Service (Aver. Int. Delay): LOS D. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS D. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Monday, 14 March 2011 1:50:07 PM SIDRA INTERSECTION 5.0.5.1510 Project: T.\Traffix2011\11029Wodelling\11 029 SIDRA 110318.sip 8000844, TRAFFIX, SINGLE

Edensor Road and Smithfield Road

Signals - Fixed Time Cycle Time = 124 seconds (User-Given Phase Times)

VICENTE		Demand	HV	Deg.	Average	Level of	95% Back of		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Avenae
MON ID	runn	iFlow veh/ii	- 2019 - 9%	Salin	Delay	Service	Vehidles veh	Distance	Quence	stop Rate	Speed km/i
South E	ast: Eden	eres and the second second second second second									ACCESSION DE LA CALCOLARIA
21	L.	183	0.0	0.482	47.3	LOS D	14.3	100.3	0.88	0.84	26.4
22	Т	496	0.0	0.482	27.4	LOS B	18.7	131.0	0.77	0.67	32.
23	R	309	0.0	1.032	129.4	LOS F	29.4	206.1	1.00	1.18	13.
Approa	ch	988	0.0	1.032	63.0	LOS E	29.4	206.1	0.86	0.86	21.
North E	ast: Smith	field Road	*****	a na sanga pro	ente recerció	e e este te que est	vin vestav	ant a sait	e to the South	n e estres	a se sus
24	۳.	301	0.0	0.880	49.8	LOS D	37.5	262.2	0.99	1.07	26.0
25	т	904	0.0	0.879	48.8	LOS D	37.5	262.2	1.00	1.04	24.
26	R	182	0.0	1.013	118.4	LOS F	17.1	119.6	1.00	1.15	14.
Approa	ch	1387	0.0	1.013	58.1	LOS E	37.5	262.2	1.00	1.06	22.
North W	/est: Eden	sor Road	sogebee	NIGAR SERVE	har shiya a	Nexe, easier	an sa an Area	9-22-22-22-22-22-22-22-22-22-22-22-22-22	Na Seguary	politikai (he	Nerger
27	L.	126	0.0	0.417	47.2	LOS D	10.8	75.4	0.85	0.82	26.
28	Т	257	0.0	0.417	41.9	LOS C	11.7	81.9	0.88	0.73	26.
29	R	56	0.0	0.350	62.7	LOS E	4.5	31.3	0.95	0.77	22.
Approa	ch	439	0.0	0.417	46.0	LOS D	11.7	81.9	0.88	0.76	25.
South V	Vest: Smitl	nfield Road	a ang a		NER AND		Norse en el componente de la componente de		94003000		
30	L	68	0.0	0.640	40.4	LOS C	14.8	103.6	0.86	0.90	29.
31	Т	629	0.0	0.640	37.0	LOS C	20.8	145.8	0.90	0.79	28.
32	R	93	0.0	0.515	67.6	LOS E	7.2	50.2	0.99	0.78	21.
Approa	ch	791	0.0	0.640	40.9	LOS C	20.8	145.8	0.91	0.80	27.

Level of Service (Aver. Int. Delay): LOS D. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

		Demand	Average	and the state of the	erage Back of	and the second second second second	in the second second	Bitective
NOV ID	Description	Flow	Delay	Service P	edestrian	Distance	Queneg S	liop Rale
		pecilin	SEC		peo	ញា		DEF DEC
P9	Across SE approach	53	39.5	LOS D	0.1	0.1	0.80	0.80
P11	Across NE approach	53	55.2	LOS E	0.2	0.2	0.94	0.94
P13	Across NW approach	53	39.5	LOS D	0.1	0.1	0.80	0.80
P15	Across SW approach	53	55.2	LOS E	0.2	0.2	0.94	0.94

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Thursday, 17 March 2011 5:35:51 PM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.5.1510 www.sidrasolutions.com Project: T:\Traffix\2011\11029\Modelling\11 029 SIDRA 110318.sip 8000844, TRAFFIX, SINGLE SIDRA 110318.sip

Appendix C-2

SIDRA Results – Existing + Development

Edensor Road and Bonnyrigg Avenue Period: PM

Scenario: Existing + Development

Signals - Fixed Time Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

		Demand	0-02	Deg	Average	Fexel@l	95% Badk o		Prop	Elifeelive	/AV/@re@(e
nion ID	(nile)	Flow	(HIV)	Sain	Delay	Service	Vehicles	Distance	QUINTED	Soprae	Speed
South E	ast: Eden	v⊜i⊮i sor Road	-% ÷		690		VCI	<u>m</u>		IDEN VER	km/
21	L	339	0.0	0.889	26.5	LOS B	8.2	57.5	0.55	0.86	34.7
22	Т	631	0.0	0.754	19.8	LOS B	20.1	141.0	0.91	0.84	36.8
Approac	ch	969	0.0	0.890	22.1	LOS B	20.1	141.0	0.78	0.85	36.0
North W	/est: Eden	sor Road		e e e	5. A	e transfertz					
28	т	422	0.0	0.361	7.7	LOS A	9.0	63.3	0.55	0.48	47.5
29	R	261	0.0	0.808	40.6	LOS C	10.9	76.5	1.00	1.02	28.3
Approac	ch	683	0.0	0.808	20.2	LOS B	10.9	76.5	0.72	0.68	37.7
South W	Vest: Bonr	nyrigg Avenue	neree		en sen de	esta este da		an in the	nd Andrea	na an san tar	s en Gige
30	L	283	0.0	0.667	35.2	LOS C	11.0	76.7	0.96	0.85	28.0
32	R	288	0.0	0.680	35.5	LOS C	11.2	78.3	0.97	0.86	27.9
Approac	:h	572	0.0	0.679	35.3	LOS C	11.2	78.3	0.97	0.86	28.0

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

		Demand	Average	Levelot	Average Back	of Queue	Prop	Bilective
/lov III	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ipeq/in	Sec		DEG		da sa ing da sa	() () () () () () () () () () () () () (
P9	Across SE approach	53	26.6	LOS C	0.1	0.1	0.87	0.87
P13	Across NW approach	53	29.3	LOS C	0.1	0.1	0.91	0.91
P15	Across SW approach	53	29.3	LOS C	0.1	0.1	0.91	0.91

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual pedestrian movements: Delay (HCM).

 Processed:
 Friday, 18 March 2011 11:56:25 AM
 Copyrig

 SIDRA INTERSECTION 5.0.5.1510
 www.sic

 Project:
 T:\Traffix\2011\11029\Modelling\11 029 SIDRA 110318.sip

 8000844, TRAFFIX, SINGLE
 SIDRA 10318.sip

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com Edensor Road and Smithfield Road Period: PM Scenario: Existing + Development

Signals - Fixed Time Cycle Time = 124 seconds (User-Given Phase Times)

പടപ്പത	Turn	Demand	HM	Deg.	Avelage	Level of			Prop	Bilestive -	AVEICE
nev ie	0.4000	Flow veh/h	%	Sein Vic	Delay	Service	Vehiloles Weh	Distance	Queree	Stop Rete-	Speed km
South E	East: Eden	And the second se	22.200 CAMP 2012								
21	L	186	0.0	0.493	47.4	LOS D	14.6	102.4	0.88	0.84	26
22	Т	508	0.0	0.493	27.6	LOS B	19.2	134.2	0.78	0.68	32
23	R	309	0.0	1.032	129.1	LOS F	29.4	205.8	1.00	1.18	13
\pproa	ch	1003	0.0	1.032	62.5	LOS E	29.4	205.8	0.86	0.86	21
lorth E	ast: Smith	field Road	e en en en el el	a server a server	en andere andere	en seguerar de	er avez a synex	e e e e e e da se		ere da sere de	1997), 199
24	L	312	0.0	0.882	50.3	LOS D	38.0	266.1	0.99	1.08	25
25	т	904	0.0	0.882	49.2	LOS D	38.0	266.1	1.00	1.04	24
26	R	182	0.0	1.013	118.4	LOS F	17.1	119.6	1.00	1.15	14
\pproa	ch	1398	0.0	1.013	58.5	LOS E	38.0	266.1	1.00	1.06	22
North W	Vest: Eden	sor Road	a sa kata sa k	alayana teres	va osta ago	ala ang sa	and and have	de vergreete	an an that an that a start and a start	n ng Nakabatan B	a de satu
27	L	126	0.0	0.428	47.3	LOS D	11.0	77.1	0.86	0.82	26
28	Ψ	266	0.0	0.427	42.0	LOS C	12.0	83.8	0.89	0.74	26
29	R	56	0.0	0.358	62.8	LOS E	4.5	31.4	0.95	0.77	22
pproa	ch	448	0.0	0.428	46.1	LOS D	12.0	83.8	0.89	0.76	25
South V	Vest: Smitl	nfield Road	e e se	o u co co	ny Alta Maria		a an Astropo	vije ostalju	AREA CONTRA	, so she tang	NA 1944
30	L	68	0.0	0.640	40.4	LOS C	14.8	103.6	0.86	0.90	29
31	Т	629	0.0	0.640	37.0	LOS C	20.8	145.8	0.90	0.79	28
32	R	96	0.0	0.533	67.8	LOS E	7.4	51.7	1.00	0.78	21
pproa	ch	794	0.0	0.640	41.0	LOS C	20.8	145.8	0.91	0.80	27

Level of Service (Aver. Int. Delay): LOS D. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

State of the second		Demand	Average	Level of /	werage Back o	Di Queue	Prop	Bicolive
Nov ID Descrip	olion -	Flow	Delay	Service	Peelestrian	Distance	Quence	SiopRelie
		()()()()	Sep		<u>ା</u> ର୍ଚ୍ଚ	<u> </u>		ାଡିକା ଜିକିଡି
P9 Across SE a	approach	53	39.5	LOS D	0.1	0.1	0.80	0.80
P11 Across NE	approach	53	55.2	LOS E	0.2	0.2	0.94	0.94
P13 Across NW	approach	53	39.5	LOS D	0.1	0.1	0.80	0.80
P15 Across SW	approach	53	55.2	LOS E	0.2	0.2	0.94	0.94

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Friday, 18 March 2011 11:54:39 AM SIDRA INTERSECTION 5.0.5.1510 Project: T:\Traffix\2011\11029\Modelling\11 029 SIDRA 110318.sip 8000844, TRAFFIX, SINGLE

Appendix D

Reduced Plans

PARKING SC EXISTIN	
Comments	Count

CARPARK LEVEL 1	123
CARPARK LEVEL 2	111
CARPARK LEVEL 3	122
CARPARK LEVEL 4	135
FRONT-PARKING LOT	35
REAR - PARKING LOT	75
Grand total: 601	

PARKING SCH PROPOSI	
Comments	Count
	·
CARPARK LEVEL 1	123
CARPARK LEVEL 2	111
CARPARK LEVEL 3	122
CARPARK LEVEL 4	135
FRONT-PARKING LOT	35
REAR - PARKING LOT	43
VIP CARPARK	26

Grand total: 595

Appendix E

Swept Paths

